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The issue of the influence of wall vibrations on the behavior of wind instruments is still under
debate. The mechanisms of vibroacoustic couplings involved in these vibrations are difficult to
investigate, as fluid-structure interactions are weak. Among these vibroacoustic interactions, the
present study is focused on the coupling between the internal acoustic field and the mechanical
behavior of the duct. For this purpose, a simplified single reed instrument consisting of a brass tube
connected to a clarinet mouthpiece has been studied. A theoretical model of coupling between the
plane inner acoustic wave and mechanical modes is developed and suggests that in order to obtain
measurable effects of wall vibrations, the geometrical parameters of the studied tube have to be
unusual compared to that of real instruments. For a slightly oval-shaped and very thin brass tube, it
is shown theoretically and experimentally that a coupling between the inner plane acoustic wave and
ovalling mechanical modes occurs and results in disturbances of the input impedance, which can
slightly affect the tone color of the sound produced. It is concluded that the reported effects are
unlikely to occur in real instruments except for some organ pipes.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2945157�
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I. INTRODUCTION

In the past few decades, much progress has been made
toward a better understanding of wind instruments.1–3 Their
main physical principles of operation are nowadays quite
well understood. Nevertheless, a few topics are still debated.
The issue of the effects of wall vibrations on the behavior of
wind instruments is one of them. Walls are usually consid-
ered as infinitely stiff compared to the enclosed air and thus
perfectly rigid. However, wall vibrations can easily be expe-
rienced by any player since they can be felt during playing.
Optical holography techniques have also been used to ob-
serve such vibrations.4 Moreover, they are claimed to be of
great influence by many musicians and instrument makers.
As a consequence, this subject, which is often associated
with the influence of the constitutive material of the instru-
ment, has been studied since the quite early days in the his-
tory of musical acoustics of wind instruments.5,6 However,
past studies dealing with this topic are not very numerous
and have produced mixed results. These studies can be clas-
sified into groups considering the origin of the vibrations and
their effects.

The various vibroacoustic couplings involved in a musi-
cal instrument have been investigated theoretically.7 Two dif-
ferent sources may generate wall vibrations, an acoustical
one and a mechanical one. Firstly, the acoustical source in-
volves the excitation of the walls by the inner pressure field.
Secondly, the impacts of the reed on the mouthpiece for
single reed instruments or direct transmission from vibra-
tions of the lips for brass instruments are mechanical sources
that can be responsible for wall vibrations.
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Whitehouse8 investigated the source of the wall vibra-
tions on a simplified brass instrument: a trombone mouth-
piece connected to a simple tube. By coupling or uncoupling
the lips to the tube or the air column to the tube, he con-
cluded that the mechanical source of vibration was stronger
than the acoustical one. For the excitation of the walls by the
inner pressure field, Watkinson and Bowsher9 studied the in
vacuo modes of trombone bells with varying material and
geometrical properties using a finite element technique. They
calculated the mechanical response to the internal acoustic
field. They found that the modes usually came by pairs with
slightly different associated eigenfrequencies and normal
modal shapes due to the asymmetry of the system. They also
observed that the inner acoustic plane wave couples only
with “non-perfectly-symmetrical” mode shapes.

Although the fluid-structure interactions in wind instru-
ments are weak, the vibrations of the walls, no matter their
origin, may then induce sound radiation in the surrounding
external or internal fluid. Direct radiation to the external fluid
may contribute to the overall radiated field. The radiation to
the internal fluid may induce a perturbation of the oscilla-
tions of the air column and thus disturb indirectly the radi-
ated field. For the coupling with the inner acoustic field,
Yousri and Fahy10 described theoretically, with a nonmusical
aim, the coupling between the modes of a cylindrical shell
and the inner plane acoustical wave below the cutoff fre-
quency of the first helical mode. The nonaxisymmetrical me-
chanical modes can be coupled only if the cylindrical shell is
geometrically slightly distorted or presents inhomogeneous
material properties. Backus11 investigated the effects of the
vibration of walls considering both the external radiation
from the instrument’s body and the possible air column al-

teration. He concluded that the vibrations are extremely
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weak and do not affect the steady tones for both of the con-
sidered coupling mechanisms. On the contrary, Nederveen
and Dalmont12 observed a spectacular effect of wall vibra-
tions in the case of an organ pipe, the bifurcation toward a
pseudoperiodic regime. Nief et al.13 reported similar effects
in the case of a very thin plastic tube connected to a clarinet
mouthpiece. Moreover, Picó Vila and Gautier14 developed a
multimodal coupling model and showed theoretically that the
input impedance of acoustic waves in the pipe could be
slightly disturbed by wall vibrations.

Among the possible couplings, the present article studies
the coupling between the inner fluid and wall vibrations. It is
supposed that the walls are excited by the inner pressure
field, and it is investigated how the resulting vibrations can
have an influence on the input impedance and on the pro-
duced sounds. This study is carried out on a simplified in-
strument composed of a single reed and a simple straight
tube. In Sec. II, theoretical considerations are given for the
input impedance of a vibrating tube and for the instrument in
playing conditions, and show that to obtain a measurable
effect, the tested tube has to be very thin �0.2 mm� and
slightly oval shaped, which is not realistic for a wind instru-
ment. In Sec. III, experimental mechanical modal analysis
and acoustical input impedance measurements are presented
in order to study in detail the vibroacoustic coupling. The
system is also tested in playing conditions to investigate the
effects on sound produced in terms of spectral content and
playing frequency. The measured effects are then interpreted
using the physical model in a playing situation, which allows
the musical sounds to be simulated.

II. THEORETICAL CONSIDERATIONS

A. Acoustic input impedance of a tube and influence
of wall vibrations

1. Input impedance of a rigid tube

A musical wind instrument can be described as a
coupled exciter-resonator system. The exciter can be charac-
terized by a nonlinear relation between acoustical pressure
and acoustical volume velocity.15 The resonator can be char-
acterized by a simple linear proportionality in the frequency
domain between the acoustical pressure P��� and the acous-
tic volume velocity U���, where � is the angular frequency,

Z��� =
P���
U���

. �1�

Nonlinear phenomena such as shock waves or nonlinear
losses at open ends sometimes have to be taken into consid-
eration when describing the acoustic resonator, but they are
not considered here. The quantity Z��� expressed at the input
of the resonator is the acoustic input impedance. It depends
mainly on the bore shape of the tube and is often used for the
study of the resonator part of a wind instrument. Indeed, it
can be linked to important physical properties of the instru-
ment under musical performance. The positions of the peaks
are strongly linked with the playing frequency and thus with
the intonation of the instrument.16 Input impedance charac-
teristics are also related to the timbre and facility of sound

17
production of different notes.
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For a cylindrical and perfectly rigid tube open at the end,
considering only the plane acoustic wave and taking into
account the length correction due to radiation, the acoustic
input impedance can be written as

Zr��� =
�0c0

S
j tan�k���L� , �2�

where c0 is the speed of sound, �0 the air density, L the
equivalent length of the tube, taking into account the end
correction due to radiation, and S its cross-sectional area.
k��� is the complex wave number, taking into account the
viscous and thermal losses at the walls,18

k��� = k0�1 +
�2�1 − j�

a�k0

��lv + �� − 1��lh��1/2

, �3�

where k0=� /c0, lv�4�10−8 m is the characteristic length
for viscous effects in air, lh�5.6�10−8 m is the character-
istic length for the thermal effects in air, and �=1.4 is the
ratio of specific heats for air. The index r associated with the
input impedance indicates that Eq. �2� is the expression for a
rigid tube. The modulus of this input impedance Zr shows
peaks corresponding to the acoustical resonances of the
closed-open air column.

2. Correction factor to input impedance due to wall
vibration

The previous description does not take into account pos-
sible wall vibrations. In order to describe those vibrations, it
is necessary to consider that the tube behaves as an elastic
shell. The instrument is modeled in a simple way by a cylin-
drical shell clamped on one end and free on the other. The
shell is excited by the internal acoustic pressure field and set
into vibration. The vibrations induce a disturbance of the
initial pressure field. This modification of the air column
oscillation yields a slight modification of the input imped-
ance of the perfectly rigid tube.14 In this approach, structural
vibrations and inner acoustic pressure are coupled. The cen-
tral point for modeling the acoustic input impedance of the
vibrating tube is to take into account a slight ellipticity of the
tube, which models the effective asymmetry. In a first ap-
proximation, its radius r can be written using the polar equa-
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FIG. 1. �a� Polar graph of the oval cross section of the tube. �b� Notations
and coordinates systems used in the Appendix for the pseudocylindrical
shell. Position of the measured points on the tested tube for modal analysis
�dots:tested points�.
tion, which is plotted in Fig. 1�a�,
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r��� = a�1 + � cos�2��� , �4�

where a denotes the mean radius and � an ellipticity param-
eter, which is small compared to unity. With notations of Fig.
1�a�, � is equal to �rmax−rmin� /2a.

The consequence of this asymmetry is the existence of a
vibroacoustic coupling between the acoustic plane wave and
the ovaling modes of the structure. Ovaling modes are char-
acterized by a circumferential modal shape in a sin�2�� form
and are often the lowest ones for geometries similar to wind
instruments. Physically, a section of the tube is subjected to a
uniform pressure distribution due to the plane wave. If the
tube is perfectly circular, this tends to dilate and contract it
only in a cylindrically symmetric manner, and the section of
the tube is only subjected to tension forces. If the tube is oval
shaped, then the isotropic pressure distribution implies also
bending forces that tend to round the tube by enlarging the
small diameter and shortening the bigger one. This move-
ment is directly linked to the ovaling deformation of the
pipe. A detailed description of the vibroacoustic coupling is
given in the Appendix. The conclusion of this Appendix is
the analytical expression of the acoustic input impedance of
the vibrating tube, which can be written as

Z��� = Zr����1 + C���� , �5�

where C is a correction factor describing the wall vibration
effect. Considering only the interaction between the internal
acoustic pressure and a single ovaling mode, it is shown that

C��� �
�2

�1 − e−2jkL�cos�kL�m����
2 �1 − j	�� − �2�

, �6�

where m� is the modal mass, which is defined in the Appen-
dix in Eq. �A5�, �� is the modal natural angular frequency,
and 	� is the modal damping, which is the natural decrease
rate of the mode. These parameters are obtained experimen-
tally from the modal testing of the tube used in the experi-
ments �see Sec. III B 1�. Equation �6� allows a direct inter-
pretation of the correction factor. Firstly, the bigger the
ellipticity �, the more the input impedance is disturbed. This
is due to the increase in the coupling between the ovaling
mode and the inner pressure field. Secondly, C is inversely
proportional to the modal mass m�, which means that distur-
bance will be more important when the cylinder is thin and
light. Thirdly, when the driving angular frequency � ap-
proaches the mechanical angular eigenfrequency, the distur-
bance increases. Finally, at the acoustical resonances of the
tube, when cos�kL� is minimum, the disturbance is maxi-
mum. The correction factor C may then take significant val-
ues when a frequency coincidence is realized between an
acoustical frequency and a mechanical ovaling eigenfre-
quency.

The value of C and Z can be computed. In Fig. 2, the
modulus of the correction factor C is plotted versus fre-
quency. The regularly spaced peaks correspond to the effect
of acoustical resonance, and the other peaks correspond to
the effects of the resonances of the ovaling modes. Figure 3
represents the modulus of the computed input impedance of
the vibrating tube. It shows additional peaks due to the me-

chanical resonances of ovaling modes.
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B. Model of a clarinetlike instrument in playing
conditions

In the playing situation, the air column oscillation de-
scribed by its input impedance is coupled to the mouthpiece
and the player. In order to take into account this coupling, the
instrument-player system is assimilated to a dynamic system
whose behavior can be described by three equations.19

�a� The linear behavior of the tube resonator is described by
the input impedance Z and the associated equation �Eq.
�1��

�b� The reed is assumed to behave like a single degree of
freedom oscillator whose equation of motion is

d2h�t�
dt

+ gr
dh�t�

dt
+ �r

2h�t� =
Pm − p�t�

�r
, �7�

where h�t� is the dynamic reed displacement, p�t� the acous-
tic pressure inside the mouthpiece, gr the reed damping fac-
tor, �r its natural frequency, �r its mass over area ratio den-
sity, and Pm the static pressure in the player’s mouth. �c� The
last equation establishes the link between the acoustic vol-
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FIG. 2. Calculated correction factor C of a brass tube, 24 cm long, 0.2 mm
thick, 7.5 mm in radius, with an 8% ellipticity. �a� Broad frequency band;
�b� zoom �modulus in the dB scale�.
ume velocity u�t� through the slit of height H in the absence
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of flow and of effective width w and the pressure difference
Pm− p�t�,

u�t� = �H + h�t��w�2	Pm − p�t�	
�

sgn�Pm − p�t��

if 	Pm − p�t�	 
 PM ,

u�t� = 0 if 	Pm − p�t�	 � PM , �8�

where PM is the pressure at which the reed closes the slit. For
various sets of input parameters, the nonlinear system of
equation has various types of solutions. Trivial solutions cor-
respond to situations where the equilibrium position of the
reed is stable. Acoustic pressure is then null, and no sound is
produced. Periodic solutions correspond to self-sustained re-
gimes of the system, which are of musical interest. Other
types of unstable solutions, like unstable periodic regimes,
can occur and lead, for example, to multiphonics or to un-
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FIG. 3. Calculated acoustic input impedance of a brass tube, 24 cm long,
0.2 mm thick, 7.5 mm in radius, with an 8% ellipticity. �a� Broad frequency
band; �b� zoom �modulus in the dB scale�. Perfectly rigid tube �dotted line�:
peaks correspond to acoustical resonances. Vibrating tube �solid line�: addi-
tional peaks correspond to mechanical ovaling mode resonances.
wanted regimes in a musical context.
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This type of model19 is classically used for the simula-
tion of single reed instruments, allows the description of the
dynamical behavior of reed instruments, and favors the inter-
pretation of the experimental observations. At the end of the
next section, the experimental measurements in playing situ-
ations are simulated using this model.

III. EXPERIMENTS

A. Dimensioning of experimental system

Influence of wall vibrations is described by a correction
factor C to input impedance, which is usually very small. As
a consequence, no significant effect of wall vibration is gen-
erally observed experimentally. This effect can be observed
only for particular tubes with specific dimensions. In order to
emphasize the possible effects of wall vibrations, the geo-
metrical characteristics and material of a tube whose acoustic
input impedance is significantly modified by these vibrations
have to be determined. As discussed in the theory explained
in Sec. II and developed in the Appendix, a significant per-
turbation of the acoustic input impedance is expected if me-
chanical eigenfrequencies occur in the vicinity of one of the
first acoustic resonances or antiresonances. In order to pro-
voke this frequency coincidence, the eigenfrequencies of cy-
lindrical shells are computed. Eigenfrequencies depend on
geometrical parameters �thickness h, radius a, and length L�
and constitutive material parameters �Young’s modulus E,
Poisson’s ratio �, and density �s� of the tube. For tubes
whose length is much larger than the radius, the first modes
of the shell are usually the ovaling modes. Our study is thus
focused on these ovaling modes. The computation of the
modal basis of a cylindrical shell is analytically tractable
only for simply supported boundary conditions.20,21 For other
boundary conditions, a semianalytical and exact procedure
can be implemented to compute eigenfrequencies and modal
shapes.22 Some approximate formulas can also be used.23 For
slender tubes �L /a
1�, the first eigenfrequencies of shells of
finite length are close to cut on frequencies fm

c of the flexural
wave associated with the circumferential index m�2 �m=2
for ovaling modes� of infinite cylinders. This frequency is
given23 by

fm
c =

m�m2 − 1�
4��3�m2 + 1

h

a2� E

�s�1 − �2�
, �9�

which can be used with m=2 to estimate the eigenfrequency
of the first ovaling mode.

From the acoustical point of view, the computation of
acoustical eigenfrequencies of a closed-open cylindrical tube
neglecting the viscous and thermal losses and considering a
null pressure at the open end can be performed using

fn = �2n − 1�
c

4L
, �10�

where c is the speed of sound in air, L the length of the tube,
and n the acoustical longitudinal index.

As experiments are carried out on a clarinetlike instru-
ment, the total length of the system is about 50 cm and the

internal radius is a=7.5 mm. This gives the following series
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of acoustical eigenfrequencies for the first five acoustical
modes: 170, 510, 850, 1190, and 1530 Hz. In order to satisfy
the frequency coincidence, geometrical and material param-
eters of a tube have to be determined so that the ovaling
mode eigenfrequency is close to one of these values. The
material chosen is brass, as it is often used for wind instru-
ments. The material parameters relative to brass are set to
E=110 GPa, �s=8700 kg /m3, and �=0.3. According to Eq.
�9�, the only free parameter is the thickness h. A thickness of
h=0.2 mm gives a frequency of 1630 Hz, which is in the
vicinity of the fifth acoustical resonance. The tube is then
connected to a rigid slide, which makes it possible to vary
continuously the acoustical resonance frequencies, thanks to
a variable total length of the tube, without changing the fixed
mechanical resonance frequencies of the vibrating tube. A
vibrating tube and a rigid slide satisfying the dimensioning
explained in this section has been machined in order to ex-
hibit the wall vibration effect. This device, which makes it
possible to satisfy exactly the frequency coincidence or, on
the contrary, to avoid it, is connected to a clarinet mouth-
piece in an artificial mouth. The vibrating tube is made from
brass tubing used in musical instrument making, carefully
machined to a thickness of about 0.2 mm. Its length is about
24 cm and its radius is 7.5 mm. The added lengths of the
rigid slide in open position and of the mouthpiece that is
inside the artificial mouth make an overall length of about
50 cm. The vibrating tube is then used for the mechanical
and acoustical measurements.

B. Mechanical and acoustical measurements

1. Experimental modal analysis

Structural modes of the vibrating tube are determined
using a standard experimental modal analysis. Eigenfrequen-
cies, mode shapes, and damping parameters can be extracted
from measured frequency response functions �FRFs�. The
FRF, vibration velocity to force ratios, are computed, record-
ing the applied force with an impact hammer and the vibra-
tion velocity signal with a laser vibrometer. The laser vibro-
meter is fixed on a single point of the structure, and the
impacts were carried out on different points positioned on a
circumference and on two generatrices of the studied tube, as
shown in Fig. 1�b�. An example of FRF is plotted in Fig. 4.
These measurements give a set of FRFs, which is used for
modal identification. The method used for this identification
is the least squares complex exponential �LSCE� method,24,25

which is implemented in the modal analysis software from
LMS. The results of this modal analysis in terms of modal
frequencies, modal damping coefficients, and mode shapes
are presented in Fig. 5.

On the plotted frequency band of Fig. 4, six modes have
been identified. As shown by their circumferential modal
shapes, each mode corresponds to an ovaling mode, with a
circumferential index m=2. They differ by their respective
orientations indicated by the angle �. Actually, the modes
can be classified into three pairs, the modes from each pair
having very close eigenfrequencies and the same longitudi-
nal index �p=1 for one node, p=2 for two nodes, and p=3

for three nodes�. The duplication of these modes is due to the
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asymmetry of the cylinder, which implies the phenomenon of
breaking of modal degeneracy: a mode with a circumferen-
tial index m �m=2 for ovaling� and a longitudinal index p
splits into two modes with different modal frequencies and
circumferential mode shapes differing in rotational angle by
� / �2m� theoretically, which is � /4 for ovaling modes.
Modes are subsequently referred to as triplets �= �m , p ,s�
for an easier identification, where s is the symmetry index
�s=0 or s=1�. For example, the second mode of Fig. 5 is
referred to as the triplet �2, 1, 1�. In order to validate this
modal model obtained from the LSCE method, simulated
FRF have been computed. In Fig. 4, a synthesized FRF is
plotted against a measured one. The relative error between
the two FRF is only a few percent, which supports the va-
lidity of the modal basis. It is also noticeable that the mea-
sured value of the first eigenfrequency agrees rather well
with the calculated one in Sec. II A, which means that the
dimensioning of the tube was accurate.

It is shown theoretically that these ovaling modes may
couple to the inner air column oscillations and alter acoustic
input impedance in the vicinity of their eigenfrequencies.
Measurements of input impedances of the vibrating tube are
presented in the next section.

2. Acoustic input impedance measurements

The device26 used for measuring the acoustic input im-
pedances is specially designed in order to impose a carefully
calibrated acoustic velocity at the entrance of the tube and to
measure the resulting pressure using a microphone. The ex-
citation is managed using a microphone cartridge used as the
acoustic velocity calibrated source. The brass tube is mea-
sured in two configurations. For the first one, the cross sec-
tion is quasicircular, corresponding to a quasinull ellipticity
parameter �=0%. For the second one, the tube is made oval
by flattening between to small planks so that ��8%. The
tube is actually perfectly circular at its entrance so that it can
be connected to the circular slide; the ellipticity increases to
be maximum at the end of the tube. In Fig. 6, measurements
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FIG. 4. Measured FRF �solid line� and synthesized FRF using the param-
eters obtained from a modal analysis �dotted line� for the thin brass tube.
corresponding to these two configurations are shown.
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It can be clearly seen in Fig. 6 that mechanical modes
have a strong influence on the input impedance of the tube
only if it is slightly flattened. Otherwise the coupling be-
tween the plane acoustic wave and the ovaling modes does
not occur. The good agreement between the measured distur-
bances of input impedance and the calculated ones in Sec.
II A 2 is also noticeable �see Figs. 3 and 6�. These distur-
bance of input impedance may then influence the sound pro-
duced by the system in playing conditions. This is investi-
gated in the next sections using an artificial blowing
machine.

C. Study of the self-sustained oscillations of the
system in playing conditions

1. Experimental setup

In order to blow and play the resonator as a musical
instrument, the slide-tube device mentioned in Sec. III A is
connected to a clarinet mouthpiece, which is put into an ar-
tificial mouth. This artificial mouth can produce stable musi-
cal sounds for long times, a few minutes or a few hours,
allowing us to keep the embouchure parameters, for ex-
ample, the mouth pressure Pm, constant. The setup, com-
posed of the artificial mouth containing the clarinet mouth-
piece, the slide, and the vibrating tube, can be described as
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an “artificially blown slide clarinet.”
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In order to investigate possible changes of sound quality
due to wall vibration, some sound pressure measurements are
carried out. The acoustic pressure inside the mouthpiece is
recorded using an Endevco microphone located in a little
hole in the mouthpiece. The external radiated pressure is
recorded in the near field in order to avoid parasite reflection
from surroundings using a Sennheiser KE-4 microphone.
This microphone is kept at a fixed position, 5 cm from the
end of the tube and 1 cm from the axis, in order to avoid
problems due to the spatial dependence of the external
acoustic field. This microphone was used to record sounds
and to perform informal listening tests �see Sec. III C 2�.
Pressures are recorded for various playing frequencies ob-
tained by pulling or pushing the slide. As the vibrations of
the walls modify the input impedance in the vicinity of the
eigenfrequencies of ovaling modes, effects on the acoustic
signals are expected when a harmonic of the playing fre-
quency matches one of these mechanical eigenfrequencies.
As the resonator is cylindrical, this coincidence can occur on
an even harmonic with an acoustical antiresonance and on an
odd harmonic with an acoustical resonance. These two con-
figurations are studied in Secs. III C 2 and III C 3, respec-
tively.

The amplitudes and phases of the harmonics of the two
pressure signals are recorded using a Stanford SR850 lock-in
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amplifier. This is performed using the built-in lock-in detec-
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tion algorithm. The lock-in detection was chosen because it
has a much better signal to noise ratio for the values of
amplitude and phase of each harmonic of the signal than the
fast Fourier transform of recorded sounds.

2. Acoustic resonance perturbation

For a particular playing configuration depending on the
slide length, the perturbation of input impedance due to wall
vibration can be positioned on an acoustical resonance. A
perturbation of the self-sustained oscillations occurs when
the system plays on the second periodic regime of oscilla-
tion, a musical 12th above the fundamental regime. This is
illustrated in Fig. 7, where the input impedance is plotted
with the position of the harmonics �fundamental, H2, H3,
and H4�. The third harmonic H3 is expected to be perturbed
when the system is played because the mechanical additional
peak strongly disturbs the input impedance around this har-
monic. The amplitudes of the harmonics of the inner pressure
signal versus playing frequency are plotted on Fig. 8. Each
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It appears that the third harmonic is strongly perturbed
for two particular frequency ranges. This corresponds to the
influence of two couples of mechanical ovaling modes �2, 1,
0� at 1612 Hz and �2, 1, 1� at 1618 Hz for the playing fre-
quencies around 538 Hz �3�538=1614 Hz, see Fig. 5� and
�2, 2, 0� at 1663 Hz and �2, 2, 1� at 1676 Hz for the playing
frequencies around 555 Hz �3�555=1665 Hz, see Fig. 5�.
The other harmonics are also perturbed around these two
frequencies. This can be attributed to a nonlinear coupling
between harmonics. Using the complex amplitude of each
harmonic, an additive sound synthesis is performed. The fun-
damental frequency is kept constant for each step in order to
focus attention on varying tone color and not on varying
pitch. The informal listening of the results of this synthesis
shows that these perturbations are audible. Another way to
illustrate this tone color modification is the direct listening of
the sounds produced by the system. In the case of frequency
coincidence, a slight timbral change is heard when compar-
ing the sound of the pipe when it is grasped by the hand and
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the sound of the free pipe. The sounds could be easily rec-
ognized in a-b type comparison tests. In the other case, when
the coincidence is not satisfied, no difference is heard
whether the tube is grasped or not.

For this coincidence configuration between mechanical
and acoustical resonance, the disturbance is rather important
and is reflected not only on the third harmonic, as expected,
but also on other harmonics. This could involve an effect not
only on the spectral content but also on the playing fre-
quency. In order to investigate this effect, the added length of
the pipe due to the pulling of the slide was measured pre-
cisely for each position of the slide using a calliper rule.
These lengths are used to calculate theoretical playing fre-
quencies using Eq. �10�, adding the length of the tube itself,
the equivalent length of the mouthpiece, and the length cor-
rection due to radiation impedance. A comparison between
the computed and measured frequencies is performed for two
configurations: the free-vibrating tube and the tube with vi-
bration damped. A small effect is pointed out, showing a
maximum difference of 1 Hz when the playing frequency is
about 555 Hz. This corresponds to the coincidence of har-
monic H3 with modes �2, 2, 0� and �2, 2, 1�.

Using the model of a single reed instrument in playing
conditions described in Sec. II B, a simulation based on the
experimental setup characteristics can be performed. The set
of three equations is solved using the harmonic balance
technique,27 which is a method developed to determine the
periodic response of nonlinear dynamic systems. The appli-
cation of this method to the three equation system provides
the playing frequency and the complex values of the ampli-
tudes of the harmonics of the pressure signal.

In order to simulate the variable positions of the slide,
the original input impedance is transformed to the new input
of the tube and is computed using the following formula:

Z2 =
Z1 + j tan�k�L�

1 + jZ1 tan�k�L�
. �11�

In Eq. �11�, Z1 is the measured input impedance when the
slide is at its minimum length, k is the acoustic wave num-
ber, and �L is the added length due to the pulling of the slide.
In this case, Z2 represents the input impedance of the system
when the slide is pulled by a length �L. Small variations of
�L are used to build a set of input impedances. For each
input impedance of this set, the harmonic balance is per-
formed considering that the values of the other input param-
eters are constant and set to realistic values �gr=2900 s−1,
�r=2��3000 rad /s, �r=0.02 kg /m2, H=1 mm, �=1 cm,
and Pm=8000 Pa�. The results in terms of amplitudes of har-
monics and playing frequencies are displayed in Fig. 9. This
figure shows that the model can describe the perturbation of
the third harmonic as expected and already measured. The
perturbation of other harmonics due to nonlinear coupling is
also observed. Some important differences between measure-
ments and simulations can be observed, showing that the
used simplified model is not perfectly accurate. Nevertheless,
the disturbance due to wall vibrations can be simulated. The
observed differences may have various origins. There are a
few slight changes in diameter due to the slide and mechani-

cal parts used to connect the tube, which means that the use
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of Eq. �11� used for the computation of the input impedance
for each simulation may be an error source as the bore is not
a pure cylinder. Particularly, the position of antiresonances
may not be exactly correct, and thus the even harmonics may
be simulated with errors. Moreover, the input parameters of
the model like the mouth pressure or the height of the slit
may be slightly inaccurate and also imply differences be-
tween measurements and simulations.

3. Acoustic antiresonance perturbation by wall
vibrations

Using the slide described in Sec. III C 2, a playing con-
figuration can be found where the perturbation of input im-
pedance due to wall vibrations matches an antiresonance.
This can be realized when the system plays on the third
periodic regime of oscillation, two octaves and a third above
the fundamental regime, for a particular position of the slide.
This is illustrated in Fig. 10, where the input impedance is
plotted with the positions of the harmonics. In such a con-
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figuration a perturbation of the second harmonic H2 is ex-
pected when the system is played. Small variations of the
slide’s length allows this coincidence condition to be either
satisfied or not.

For each position of the slide, the amplitudes of the har-
monics of the measured inner pressure signal versus playing
frequency are recorded. Results are given in Fig. 11. It is
noticeable that the second harmonic �H2� is perturbed at two
particular frequencies corresponding to the influence of two
couples of mechanical ovaling modes �2, 1, 0�, �2,1,1� for the
playing frequencies around 807 Hz �2�807=1614 Hz, see
Fig. 5� and �2, 2, 0�, �2, 2, 0� for the playing frequencies
around 834 Hz �2�834=1668 Hz, see Fig. 5�. In this case
of a coincidence between a mechanical ovaling resonance
and an acoustic antiresonance, spectral changes in the musi-
cal sound are also induced.

In the same way as for the case of an acoustic resonance
perturbation �Sec. III C 2�, the experiment has been simu-
lated numerically using the three equation model. A set of
acoustic input impedances corresponding to various posi-
tions of the slide is calculated. For each of them, the model is
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solved using the harmonic balance method. Results are dis-
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played in Fig. 12. Significant differences from the measure-
ments are again observed, which show the limit of the sim-
plified model, for the same reasons as in Sec. III C 2.
Spectral changes are however fairly well simulated using this
model.

IV. DISCUSSION

In Sec. III C, for this unusual instrument, it has been
shown that some slight tone color variations can occur when
an acoustic resonance or antiresonance coincides with the
resonance frequency of an ovaling mode of the resonator. An
approximate value of the first ovaling frequency has been
computed for real instruments using realistic geometrical and
material parameters. The values, given in Table I, differ a lot
between various wind instruments. As the eigenfrequency of
the first ovaling mode for the flute is 1900 Hz, effects similar
to the ones described in the present paper, such as slight tone
color modification, might occur but may however be even
weaker due to weak ellipticity and because of additional me-
chanical damping due to stoppers or finger tips. Acoustic
impedance measurements of a real flute resonator has been
carried out, but no clear evidence of additional peaks ap-
peared. Brass instrument bells, which have large diameters
and low mechanical frequencies28 and which are free to vi-
brate, might show small acoustic impedance disturbance. For
metal clarinet or trombone slide, coincidence may occur on a
high harmonic, and effects are unlikely to be expected. For
the wooden clarinet, such effects, even if present, are likely
to be inaudible as the ovaling frequency lies in the ultrasonic
range. On the contrary, because of their softer construction
material �lead tin alloy� and a larger inner radius, greater
effects can occur for organ pipes, as the ovaling frequency is
only a few hundred hertz, as shown in Table I. This mechani-
cal frequency may match the fundamental playing frequency
on particular pipes in a stop. In that case, wall vibrations may
even induce transition to pseudoperiodic regimes of oscilla-
tion and wolf notes, as has been already observed
experimentally.12 To confirm this assumption, input imped-
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Nief et al.: Wall vibration effect on wind instruments



carried out and have shown additional peaks due to mechani-
cal ovaling modes at frequencies of about 300 Hz.

V. CONCLUSION

In this paper, effects of wall vibrations on a simplified
wind instrument have been investigated, considering a cou-
pling between the duct and the internal pressure field. For a
very thin and oval shaped tube, with geometrical parameters
unusual in comparison to that of real instruments, such a
coupling has been demonstrated.

Firstly, the theoretical prediction of a coupling between
the mechanical ovaling mode of a duct with an oval cross
section and the plane propagating acoustic mode has been
presented and confirmed experimentally. Due to this cou-
pling, the acoustic input impedance is perturbed. The pertur-
bation can be significant near the eigenfrequencies of the
ovaling modes of the duct. The importance of asymmetry
already noticed1,9 and studied14 has also been shown experi-
mentally and theoretically; it has been demonstrated that for
a perfectly symmetrical tube such a coupling cannot occur.
In practice, for real instruments, perfect symmetry is not
achievable due to the presence of side holes or keys, for
example, but would not be sufficient to achieve measurable
coupling with mechanical ovaling modes of the structure.

Secondly, the influence of the modification of input im-
pedance on the sound produced by the tested vibrating tube
connected to a clarinet mouthpiece has been investigated ex-
perimentally and simulated numerically. The results show
that when the eigenfrequency of a mechanical mode matches
an acoustic resonance or antiresonance, particular behaviors,
different from the perfectly rigid case, are found. In this case
of frequency coincidence, the spectral content of sounds is
slightly different from that of the perfectly rigid case. These
spectral changes involve an audible tone color modification.
An artificial oval shaped and thin walled system has been
constructed for these effects to be measurable. For real or-
chestral instruments, although the previously described
mechanism is not to be excluded completely for a particular
instrument, similar effects are thus unlikely to be measurable
and, even if they were, would only occur for one or a few
notes. Higher mechanical eigenfrequencies �except for the
flute�, additional vibration damping due to finger tips, stop-
pers and stronger walls, and low ellipticity weaken the ef-

TABLE I. Approximate value of the frequency of th

Ebony Bb
clarinet

Meta
clar

Thickness �mm� 5 0
Internal radius �mm� 7 7
Length �m� 0.5 0

Young’s modulus �GPa� 3 11
Poisson’s ratio 0.35 0.
Density �kg /m3� 1000 85

First ovaling mode
frequency �Hz�

23 000 48
fects shown in this paper. The regular lead-tin organ pipes
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are exceptions because they have low ovaling frequencies.
Such effects can only occur for pipes whose mechanical
eigenfrequency coincides with the fundamental playing fre-
quency or with one of its harmonics. However, other physi-
cal processes could possibly induce wall vibration effects as
all vibroacoustic couplings have not been investigated in this
paper.
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APPENDIX A: COMPUTATION OF THE CORRECTION
FACTOR C TO INPUT IMPEDANCE

The principle of the computation of the correction factor
C is based on a perturbation method. Firstly, the vibration
velocity field of the walls of the resonator resulting from the
inner pressure field, as it would be with no vibration of walls,
is computed. The vibration field is then used in order to
calculate the new inner pressure field, taking into account the
inner radiation from the vibrating walls. The input imped-
ance of the vibrating resonator is then computed. This
method is a similar approach to the one of Picó Vila and
Gautier,14 but the present one takes into account more real-
istic mechanical boundary conditions and a more precise de-
scription of the mechanical modal basis.

The resonator of the instrument is a pseudocylindrical
shell, clamped at the entrance and free at its end, presenting
a slight ellipticity, which can be described using the polar
equation r���=a�1+� cos�2��� �see Fig. 1�a��. The acoustic
boundary conditions are modeled by a uniform acoustic ve-
locity V0 at the entrance of the tube and a null pressure at the
end. Figure 1�b� displays the notations of the following de-
scription.

The motion of this shell is described by the displacement
field X�M�= �u ,v ,w�t, which results from the inner acoustic
field p�M�. In the harmonic regime, ej�t is implicit and the
motion equation can be written in a compact form,

− psh��2 + �a
2L�X�M� = p�M� · n , �A1�

where �a=1 /r����E /�s�1−�� is a parameter equaling the

t ovaling mode for wind instruments.
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Young modulus, � its Poisson’s ratio, and h the thickness of
the shell.20 L is the Donnell stiffness operator of the nondis-
torted shell. The eigenmodes of the nondistorted shell �� in
vacuum, which can be referenced using the triplet of indices
�= �p ,m ,s�, can be written as

�� = 
Up�z�sin�m�� − �� + s�/2�
Vp�z�sin�m�� − �� + s�/2�
Wp�z�sin�m�� − �� + s�/2�

� , �A2�

where Up, Vp, and Wp are the longitudinal modal shapes of
the mode of axial index p=1,2 , . . . and sin�m��−��+s� /2�
is the circumferential modal shape with circumferential in-
dex m=0,1 ,2 , . . . and symmetry index s=0 or 1. The angle
� represents the direction of the principal axis of the consid-
ered mode, which is not necessarily null, as explained by
Soedel.21 Using the expansion over the in vacuo modes
X�M�=��A���, reporting it in Eq. �A1�, and projecting it
on mode ���, one can write

�sh�
�

A�

S

���
t · ��

��
2 − �2

�a
2 dS = 


S

���
t · np�M�

�a
2 dS .

�A3�

The � dependency of �a in the left-hand term of Eq. �A3� is
neglected, which means that mechanical modes are not
coupled through the ellipticity of the cylinder. It is also con-
sidered that the exciting pressure p�z� is the acoustic field in
the case of perfectly rigid walls assuming the light fluid ap-
proximation. Equation �A4� can then be written as

A�m����
2 − �2� = 


0

L 

0

2�

��
t · np�z��1 + � cos�2���2

�r���dzd� , �A4�

where n is the radial vector so that ��
t ·n=Wp�z�sin�m��

−��+s� /2�, and � the modal mass is defined by

m� = 

S

�Sh��
t · ��dS . �A5�

The pressure field inside the rigid tube is expressed as

p�z� = j�0c0V0
sin�k�L − z��

cos�kL�
. �A6�

Using these expressions, considering that ��1 and introduc-
ing the parameter 	� modeling the structural modal damp-
ing, the unknown modal amplitudes A� are given by

A�m����
2 �1 − j	�� − �2�

=
j�0c0V0a

cos�kL� 
0

L

Wp�z�sin�k�L − z��dz

�

0

2�

sin�m�� − �� + s�/2��1 + 3� cos�2���d� ,

�A7�

where �0 is the air density, c0 the speed of sound, and V0 the
uniform acoustic velocity at the entrance of the cylinder. This

expression shows that if m=2 �ovaling mode� and �=0 �per-
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fectly circular shell�, the modal amplitudes are null and thus
the coupling cannot occur. The two integrals of Eq. �A7� are
noted as follows:

Ip = 

0

L

Wp�z�sin�k�L − z��dz ,

Im = 

0

2�

sin�m�� − �� + s�/2��1 + 3� cos�2���d� . �A8�

For example, for a simply supported shell Wp�z� is Wp�z�
=sin�p� /L�. For other boundary conditions the integral can
be calculated using an experimental axial modal profile
Wp�z�, which has been done in this paper. Knowing Wp�z�,
the z-axis mode shape that is fitted using a polynomial, A�

are known and thus the vibrations of the shell are known.
Using this velocity vibration field, the new inner pres-

sure is then calculated using the integromodal approach. The
Green’s function of the infinite cylinder, considering only the
plane wave is,

G�z,z0� =
e−jk	z−z0	

2j�a2k
. �A9�

The integral representation of the acoustic field in the tube
with vibrating walls is

p�z� = 

S

G�z,z0��np�z0� − p�z0��nG�z,z0�dS0. �A10�

On the entrance surface of the cylinder, we have

�nG =
− e−jkz

2a2�
, p�0� = P0 and �np = j�V0�0.

At the end surface of the cylinder,

�nG =
− ejk�L−z�

2a2�
, p�L� = 0 and �np = − j�VL�0.

On the lateral surface,

�nG = 0, �np = − j�0�V and V = ẇ = j�w .

Developing Eq. �A10� it is possible to write

p�z� = �B+ + D+�z��e−jkz + �B− + D−�z��e−jk�L−z�, �A11�

where functions D+ and D− take into account the vibrations
of the walls. B+, B−, D+, and D− are then written as

B+ =
1

1 + e−2jkL ��0c0V0 + D−�0�e−jkL − D+�L�e−2jkL� ,

B− =
1

1 + e−2jkL �− �0c0V0e−jkL − D−�0�e−2jkL

− D+�L�e−jkL� ,

D+�z� =
− j�0c0�

2a�
�
�
�A�


0

2�

sin�m��0 − �� + s�/2�

��1 + � cos�2�0��d�0
z

ejkz0Wp�z0�dz0� .

0
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D−�z� =
− j�0c0�

2a�
�
�
�A�


0

2�

sin�m��0 − �� + s�/2�

��1 + � cos�2�0��d�0

z

L

e−jk�z0−L�Wp�z0�dz0� .

�A12�

The modal amplitudes are known using Eq. �A7�, and the
integrals can be calculated knowing Wp�z�. The integrals of
Eq. �A12� are noted as follows:

Jp = 

0

L

ejkz0Wp�z0�dz0,

Kp = 

0

L

e−jk�z0−L�Wp�z0�dz0,

Im� = 

0

2�

sin�m��0 − �� + s�/2��1 + � cos�2�0�d�0� .

�A13�

Using Eq. �A11�, the input impedance is

Z =
P0

V0
=

B+ + �B− + D−�0��ejkL

V0
. �A14�

After some algebra using Eqs. �A7� and �A12�, it is possible
to write the input impedance as

Z = Zr�1 + C� , �A15�

where Zr= j�0c0 tan�kL� is the input impedance of the rigid
cylinder and C a correction factor to this input impedance,
which is equal to

C =
2e−jkL

�0c0�1 − e−2jkL�
D−�0�

V0
−

2e−2jkL

�0c0�1 − e−2jkL�
D+�L�

V0
,

�A16�

where

D+�L� = �
�

�0
2c0

2V0�ImIm� IpJp

2� cos�kL�m����
2 �1 − j	�� − �2�

,

D−�0� = �
�

�0
2c0

2V0�ImIm� IpKp

2� cos�kL�m����
2 �1 − j	�� − �2�

. �A17�

For a single ovaling mode of index �= �2, p ,s�, the coeffi-
cient C is proportional to

�2

�1 − e−2jkL�cos�kL�m����
2 �1 − j	�� − �2�

. �A18�
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